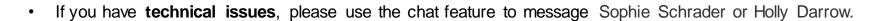


Applying Hydrogen Knowledge Hydrogen and Analytical Tools Webinar Series

May 29, 2024

Overview of Workshop Series


Title	Description	Proposed Date
#1: Hydrogen 101	- Hydrogen Considerations Tree - US National Hydrogen Strategy and Roadmap - Key considerations and tools used for hydrogen market analysis	7 February
#2: Hydrogen to Support Climate Targets	- Potential for hydrogen, and its derivatives to decarbonize domestic, commercial, and hard-to-decarbonize sectors. - Overview of the "Greenhouse gases, regulated emissions, and energy use in technologies" (GREET) Model	21 February
#3: Technical Considerations	- Technical considerations and challenges of hydrogen production, storage, and transport - Application of the Hydrogen Analysis Production (H2A) tool: Transparent cost analysis methodology for hydrogen production at centralized and distributed facilities	6 March
#4: Hydrogen Markets	 Techno-economic considerations for near- and long-term hydrogen (+ derivatives) markets Example analysis and tools for demand projections Overview and application of the Revenue, Operation, and Device Optimization (RODeO) tool: Explores optimal system design and operation 	20 March
#5: International Hydrogen Landscapes	 Policy and regulatory enabling conditions (e.g. standards, certifications, incentives) to support hydrogen markets Overview of International Hydrogen Markets and Standards, and the International Partnership for Hydrogen and fuels cells in the Economy – IPHE Hydrogen Workforce Development, Energy and Environmental Justice 	17 April
#6: Hydrogen in the Transport Sector and Infrastructure Planning	 The capacity for hydrogen to decarbonize the transport sector and ownership costs of different propulsion technologies for medium and heavy-duty vehicles Overview and application of the Scenario Evaluation and Regionalization Analysis (SERA) tool: Provides insights that can guide hydrogen infrastructure development and transportation investment decisions (city to national levels). 	1 May
#7: Applying Knowledge	 Integrated exercises to apply acquired knowledge into country-specific structure, roadmap, and prioritization framework Summary of key takeaways from training program and next steps Application of the Hydrogen Financial Analysis Scenario Tool (H2FAST) tool: Provides a quick and convenient in-depth financial analysis for hydrogen projects 	29 May

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Housekeeping - Zoom

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

- This webinar is being recorded and will be shared with attendees.
- You will be **automatically muted** upon joining and throughout the webinar.
- Please use the chat feature to add comments and share input.
- Please use the Q&A function in your toolbar to ask questions.

- You can adjust your audio through the **audio settings.** If you are having issues, you can also dial-in and listen by phone. Dial-in information can be found in your registration email.
- We will be launching a **survey** when the event ends. Your feedback is highly valuable to us!

Webinar & Speaker Introductions

Agenda

Speaker	Торіс	Duration
Daniella Rough	Welcome, housekeeping, series intro, agenda, speaker intros, CESC intro	15 mins
Jamie Kee	Overview of the Hydrogen Financial Analysis Scenario Tool (H2FAST)	10 mins
Hussain Almajed	H2FAST Case Study: Wind-Powered Green Ammonia Production in La Guajira, Colombia	30 mins
Daniella, Jamie, Omar, Hussain	Q&A	15 mins
Daniella Rough	Discussion and SWOT analysis	30 mins
Daniella, Jamie, Omar, Hussain	Q&A, wrap up, and closing	20 mins

Webinar Speakers

Daniella Rough

International Project Manager
National Renewable Energy Laboratory

Jamie Kee

Hydrogen Analyst National Renewable Energy Laboratory

Hussain Almajed

PhD Intern

National Renewable Energy Laboratory

Overview of the Clean Energy Solutions Center

Presented by Aaron Ng, U.S. Department of Energy

May 29, 2024

The Clean Energy Solutions Center

OBJECTIVE

To accelerate the transition of clean energy markets and technologies.

ACTORS

Leads:

Operating Agent:

Partners:

More than 40 partners, including UN-Energy, IRENA, IEA, IPEEC, REEEP, REN21, SE4AII, IADB, ADB, AfDB, and other workstreams etc.

RATIONALE

Many developing governments lack capacity to design and adopt policies and programs that support the deployment of clean energy technologies.

ACTIONS

- Deliver dynamic services that enable expert assistance, learning, and peer-to-peer sharing of experiences. <u>Services are offered at</u> <u>no-cost to users.</u>
- Foster dialogue on emerging policy issues and innovation across the globe.
- Serve as a first-stop clearinghouse of clean energy policy resources, including policy best practices, data, and analysis tools.

AMBITION/TARGET

Support governments in developing nations of the world in strengthening clean energy policies and finance measures

UPDATES

Website:

www.cleanenergyministerial.org/initiativ es-campaigns/clean-energy-solutionscenter

Factsheet:

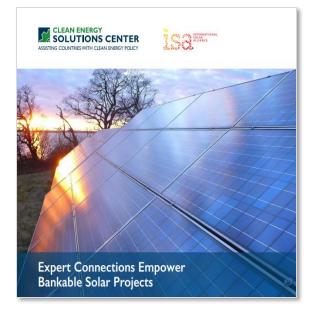
www.nrel.gov/docs/fy22osti/83658.pdf

Requests: Now accepting Ask an Expert requests!

The Clean Energy Solutions Center

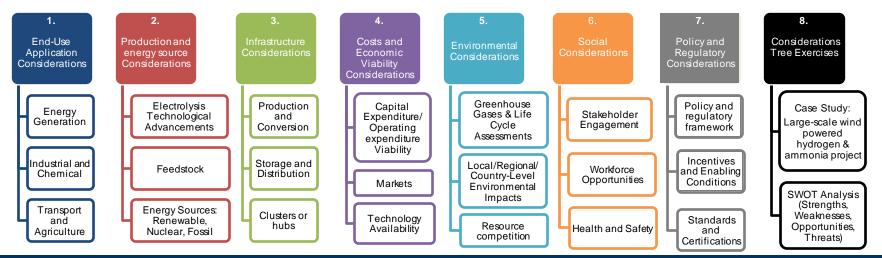
<u>Ask an Expert Service</u>

- Ask an Expert is designed to help policymakers in developing countries and emerging economies identify and implement *clean energy policy* and finance solutions.
- The Ask an Expert service features a network of more than **50** experts from over **15** countries.
- Responded to **300+** requests submitted by **90+** governments and regional organizations from developing nations since inception


Training and Capacity Building

 Delivered over 300 webinars training more than 20,000 public & private sector stakeholders.

<u>Resource Library</u>


• Over **1,500** curated reports, policy briefs, journal articles, etc.

For additional information and questions, reach out to Jal Desai, NREL, <u>jal.desai@nrel.gov</u>

Guiding Sustainable Hydrogen Integration: Hydrogen Considerations Tree

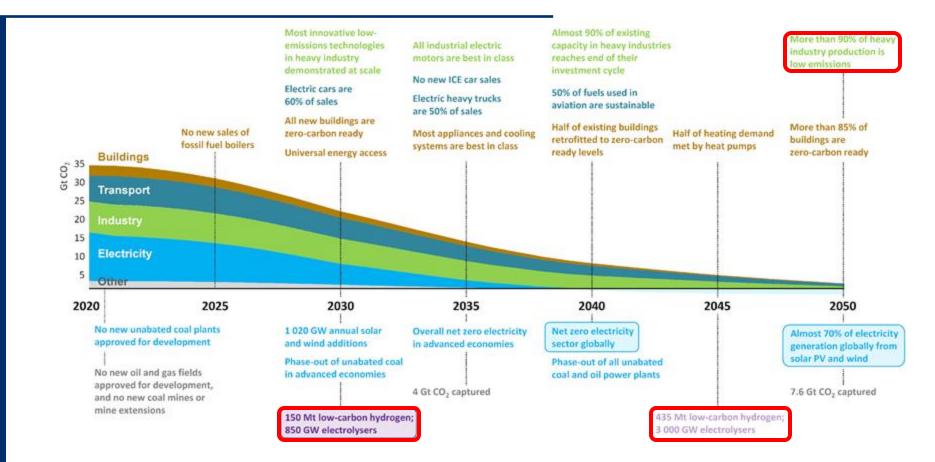
- **Background:** Growing need from country partners related to hydrogen, and key considerations in costs, benefits and tradeoffs when making strategy, policy and investment decisions.
- **Objective:** Build understanding and capacity of country partners to make informed decisions, as they look to potentially support hydrogen and its derivatives.
- **Format:** Key topics are organized into a "considerations tree" to help stakeholders think through technical, regulatory, economic, environmental, social, and analytical questions.

CLEAN ENERGY

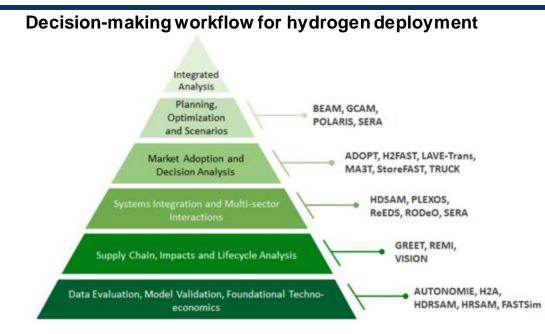
SOLUTIONS CENTER

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Explore the USAID-NREL Hydrogen Considerations Tree



Executive Deck


Fact Sheet

The Path Toward a Net-Zero Emissions Energy Sector by 2050

Tools Spotlight: Supporting decision making

ADOPT: Automotive Deployment Options Projection Tool, Autonomie: (a vehicle system simulation tool), BEAM: Behavior, Energy, Autonomy, and Mobility, FASTSim: Future Automotive Systems Technology Simulator, GCAM: Global Change Assessment Model, GREET: Greenhouse gases, regulated emissions, and energy use in Technologies Model, H2A: The Hydrogen Analysis Project, H2FAST: Hydrogen Financial Analysis Scenario Tool, HDRSAM: Heavy-Duty Refueling Station Analysis Model, HDSAM: Hydrogen Delivery Scenario Analysis Model, HRSAM: Hydrogen Refueling Station Analysis Model, LAVE-Trans: Light-Duty Alternative Vehicle Energy Transitions, PLEXOS: (an integrated energy model), POLARIS: (a predictive transportation system model), ReEDS: Regional Energy Deployment System, REMI: Regional Economic Models, Inc., RODeO: Revenue Operation and Device Optimization Model, SERA: Scenario Evaluation and Regionalization Analysis, StoreFAST: Storage Financial Analysis Scenario Tool, VISION: (a transportation energy use prediction model).

- Hydrogen Analysis Production (H2A): Transparent reporting of process design assumptions and a consistent cost analysis methodology for hydrogen production at central and distributed (forecourt/fillingstation) facilities. H2A includes biomass, coal, electrolysis, natural gas, and emerging production pathways.
- <u>Revenue, Operation, and Device Optimization</u> (<u>RODeO</u>): Explores optimal system design and operation considering different levels of grid integration, equipment cost, operating limitations, financing, and credits and incentives.
- Scenario Evaluation and Regionalization Analysis (SERA): Provides insights that can guide hydrogen infrastructure development and transportation investment decisions and accelerate the adoption of hydrogen technologies (city to national levels).

Hydrogen Financial Analysis Scenario Tool (H2FAST): Provides a quick and convenient in-depth financial analysis for hydrogen fueling stations and hydrogen production facilities.

Overview of the Hydrogen Financial Analysis Scenario Tool (H2FAST)

Presented by Jamie Kee, National Renewable Energy Laboratory

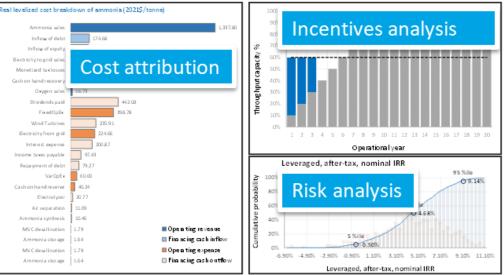
May 29, 2024

H2FAST – Hydrogen Financial Analysis Scenario Tool

Provide flexible rigorous financial analysis for wide variety of hydrogen and non-hydrogen production and service systems.

Accommodate diverse systems and services. (example past applications)

- Retail hydrogen sales
- Hydrogen production (electrolytic, fossil, biomass, others)
- Hydrogen delivery & distribution
- Ammonia production
- Methane pyrolysis
- EV charging
- Seasonal energystorage
- Fleet operations
- Combined heat and power (CHP fuel cells)

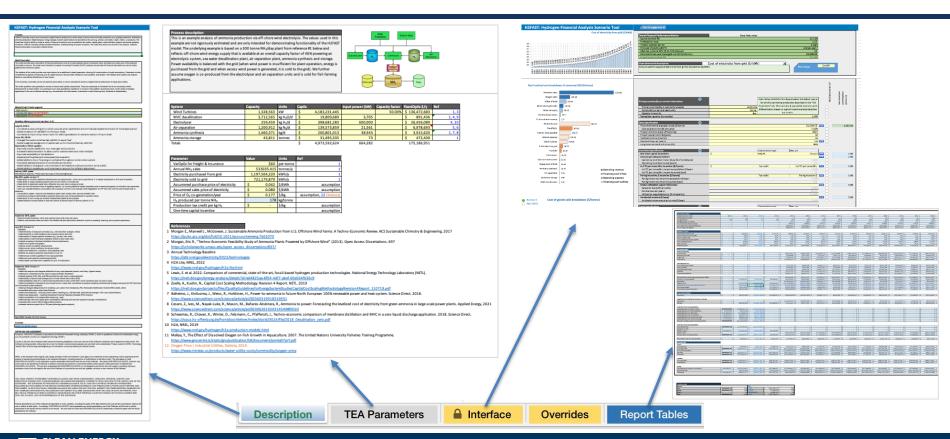

Model users

CLEAN ENERGY

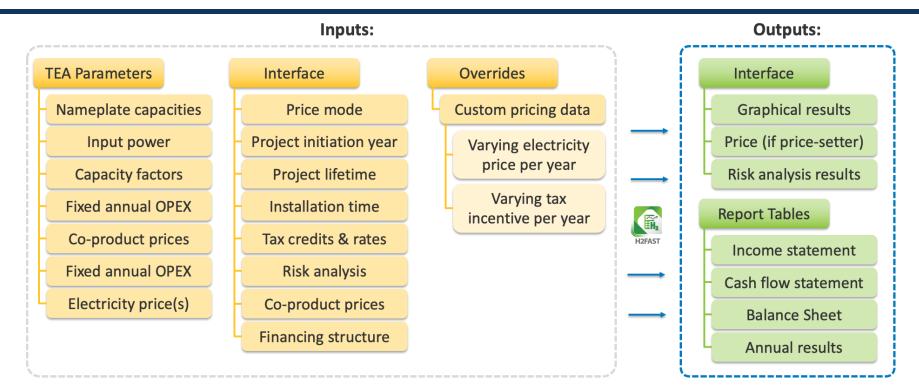
ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

- · System operators
- Government & policy makers
- Equity and debt investors
- Strategic investors (gas suppliers, utilities, car OEMs)
- Equipment manufacturers
- Academic institutions & national laboratories

H2FAST – Hydrogen Financial Analysis Scenario Tool


- Financial model built for commodity-based processes, such as hydrogen production
- Publicly-available Excel model
 - Python version is now available from NREL
- Converts engineering inputs to Generally Accepted Accounting Principles (GAAP)
 - Income and cash flow statements as well as a balance sheet allows auditing of the financial calculations
- Compatible with the International Financial Reporting System (IFRS)
- Model modes:

G COUNTRIES WITH CLEAN ENERGY POLIC


- Price-taker: Set the market price and analyze financial performance
- Price-setter: Set the target financial parameters and calculate price

H2FAST – Excel Sheets Overview

How Does H2FAST Work?

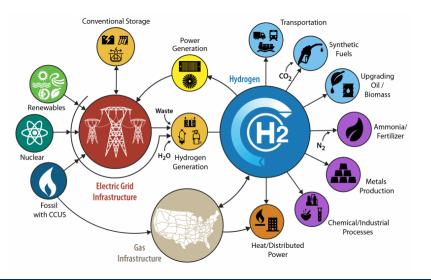
Inputs capture a variety of system parameters to produce accurate output results

Why H2FAST?

- H2FAST provides a detailed financial analysis based on simple technical and financial parameters
- **H2FAST** outputs cost breakdown of relevant financial metrics (e.g., co-product sales, taxes, feedstocks, etc.)
- H2FAST allows users to perform detailed analyses (e.g., sensitivity analyses, risk analysis, multiple scenarios)
- H2FAST helps users understand the economic and financial feasibility of projects and provides a standardized approach for comparing processes

Thank you!

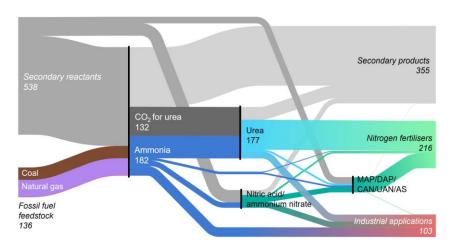
Jamie Kee, <u>Jamie.Kee@NREL.gov</u>


H2FAST Case Study: Wind-Powered Green Ammonia Production in La Guajira, Colombia

Presented by Hussain Almajed, National Renewable Energy Laboratory

May 29, 2024

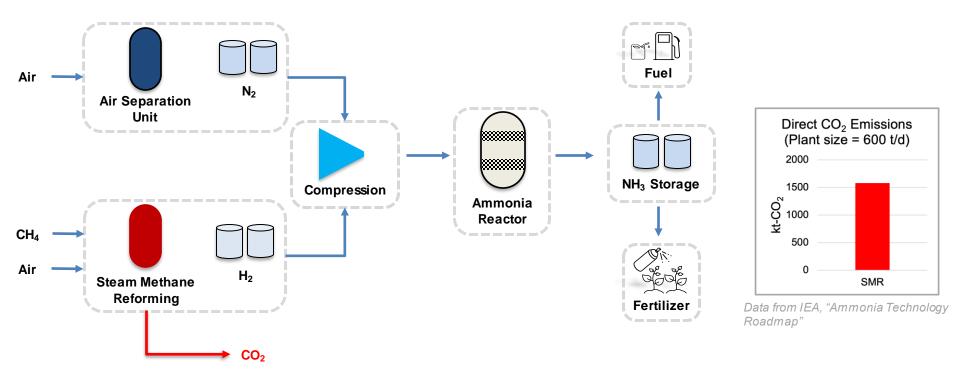
Green Ammonia Requires Green Hydrogen


- Renewably-powered H₂ can be used in many industries
- Expected 2030 H₂ global demand from electrolysis = 27 Mt-H₂/yr

CLEAN ENERGY

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

- Today, green ammonia requires electrolysis-based H₂
- Ammonia global demand in 2050 is expected to be almost double the demand in 2019

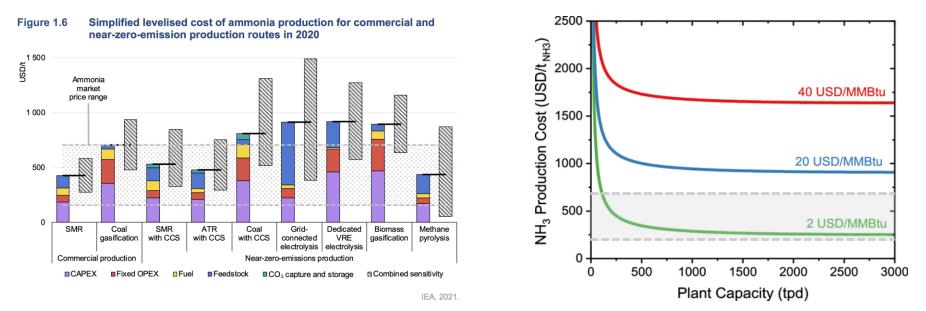


IEA, Ammonia Technology Roadmap, 2021. https://www.iea.org/reports/ammonia-technology-roadmap/executive-summary DOE. H2@Scale. 2017. https://www.energy.gov/eere/fuelcells/h2scale clear

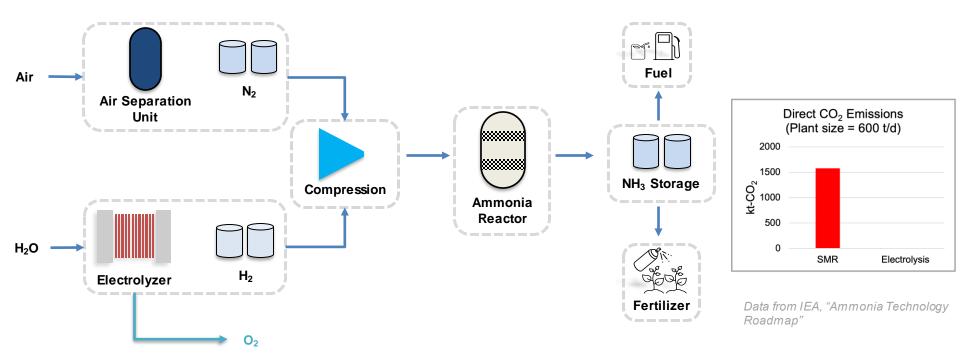
cleanenergysolutions.org | 22

IEA. Global Hydrogen Review 2023, 2023, https://www.iea.org/reports/global-hydrogen-review-2023/executive-summary

Conventional Ammonia Production



*Simplified process flow diagram of the conventional Haber-Bosch process

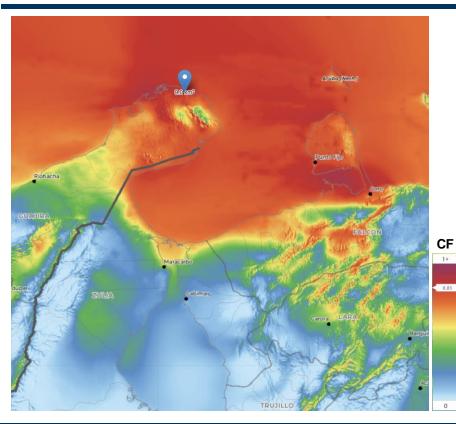


Conventional Ammonia Price Sets the Benchmark Price

- Conventional ammonia price ≈ \$220-700 per tonne
 - Heavily depends on the price of natural gas

Green Ammonia Production

*Simplified process flow diagram of the "green" Haber-Bosch process


The Case Study: Considered Process Design

*Simplified process flow diagram of the considered ammonia production pathway

The Case Study: Key Assumptions

- Location: NE of La Guajira, Colombia (high wind capacity factor)
- <u>Plant Capacity:</u> 300 tonnes of ammonia per day
- Electricity Sold to Grid: 50.2%
- Electricity Purchased from Grid: 49.2%
- Wind Capacity Factor: 81.3%
- Inflation Rate: 7.16% (Colombia)
- **Depreciation Method:** Straight Line

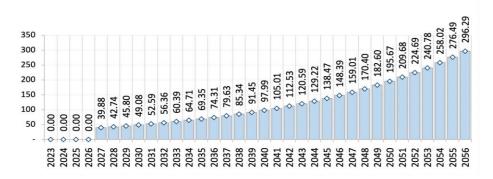
27

JERGY Global Wind Atlas. URL: https://globalw indatlas.info/en (accessed May 22nd, 2024) IONS CENTER Morgan E., Manw ell J., McGow an, J. Sustainable Ammonia Production from U.S. Offshore Wind Farms: A Techno- cleanenergysolutions.org | MITH CLEAN ENERGY POLICY Economic Review . ACS Sus. Chem. & Eng. 2017. DOI: 10.1021/acssuschemeng.7b02070

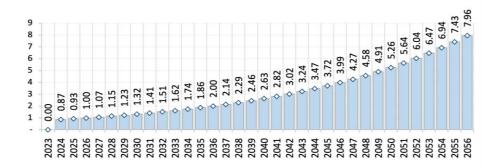
The Case Study: Parameters Input

Parameter	Value
Sold grid electricity price (\$/MWh)	80
Purchased off-grid electricity price (\$/MWh)	42
O ₂ price (\$/kg-O ₂)	0.177
Wind power capacity factor	81.33%
Plant capacity factor	90%
Total tax rate	29.4%
General inflation rate	7.16%
Leveraged after-tax nominal discount rate	25.72%
Debt/equity ratio	70/30
Debt interest rate (long-term, bond)	10.7%
Working capital	3-month liquidity

ISTING COUNTRIES WITH CLEAN ENERGY POLICY

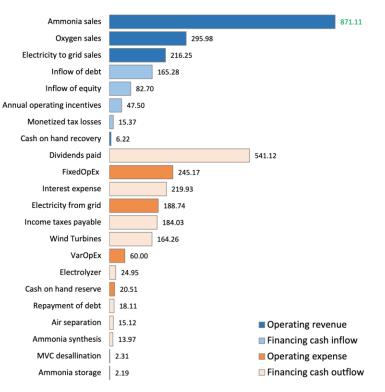

Other inputs to consider:

- Tax incentives
 - One-time payments
 - Annual incentives
- Variable annually-averaged electricity prices (Override)
- Specific CAPEX/OPEX elements
- Taxation of operating incentives
- Depreciation methods and lengths
- Debt type (bond type vs. one-time loan)


The Case Study: Baseline Results from H2FAST

oxygen sales (\$/year), (Millions)

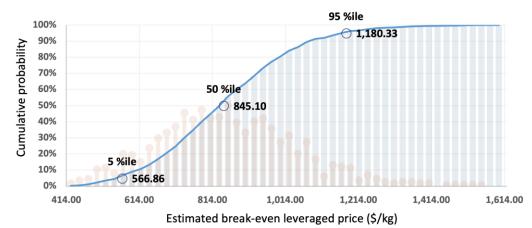
Price of ammonia (\$/tonne), (Thousands)



CLEAN ENERGY

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

IONS CENTER


Real levelized cost breakdown of ammonia (2024\$/tonne)

The Case Study: Risk Analysis Results from H2FAST

- Monte Carlo risk analysis results
- Most-probable break-even leveraged price of ammonia

Estimated break-even leveraged price (\$/kg)

CLEAN ENERGY

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

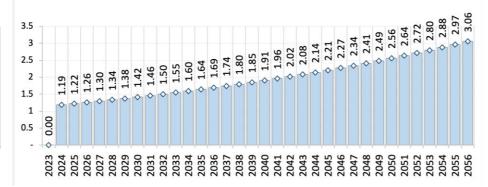
Tornado chart: Estimated break-even leveraged price (\$/kg)

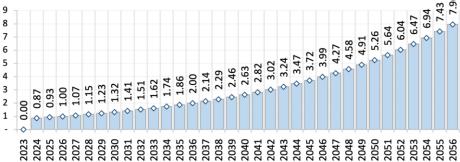
Leveraged after-tax nominal discount rate (0.21, 0.26, 0.31)	619.60 871.1067017 1171.365725
Capacity (tonne/day) (433.33, 333.33, 300.00)	613.52 995.1302362
Debt interest rate (compounded monthly) (0.09, 0.11, 0.16)	777.27 1115.01726
Long-term nominal utilization (%) (1.08, 0.90, 0.81)	685.07 995.1302362
FixedOpEx (\$/year) (13.42M, 26.85M, 40.27M)	739.46 1002.752706
Wind Turbines (485.19M, 539.10M, 646.92M)	785.79 1041.742991
Price of electricity to grid (\$/kWh) (0.12, 0.08, 0.06)	762.98 925.1698893
Cost of electricity from grid (\$/kWh) (0.03, 0.04, 0.06)	820.43 972.4519709
Price of oxygen (\$/kg) (0.21, 0.18, 0.14)	811.91 930.3022113
Cost of VarOpEx (\$/n/a) (30.00, 60.00, 90.00)	838.89 903.3240277
VarOpEx (n/a/tonne) (0.90, 1.00, 1.20)	864.66 883.9936321
Electricity from grid (kWh/tonne) (4,494, 4,494, 4,719)	871.11 881.2412287
	0 200 400 600 800 1000 1200 1400

The Case Study: Inflation Rates Effects

• Inflation rates affect the break-even leveraged price of NH₃

<u>7.16%</u>


Overall Financial Performance Metrics	Most likely value		
Equity nominal IRR	25.72%		
Profitability index	1.00		
Investor payback period			
First year of positive EBITD	analysis year 4		
After-tax, nominal NPV @ 25.72% discount	<u>\$0</u>		
Estimated break-even leveraged cost (2024\$/tonne)	\$871.11		


Price of ammonia (\$/tonne), (Thousands)

Overall Financial Performance Metrics	Most likely value
Equity nominal IRR	25.72%
Profitability index	1.00
Investor payback period	6 years
First year of positive EBITD	analysis year 4
After-tax, nominal NPV @ 25.72% discount	<u>\$0</u>
Estimated break-even leveraged cost (2024\$/tonne)	\$1,187.22

Price of ammonia (\$/tonne), (Thousands)

CLEAN ENERGY

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

ONS CENTER

The Case Study: Additional Sensitivity Results

CLEAN ENERGY

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

IS CENTER

Parameter	Optimistic	Base	Pessimistic	Sensitivity Analysis
Sold grid P _{electricity} (\$/MWh)	106.7	80	53.3	
Purchased off-grid Pelectricity (\$/MWh)	28	42	56	Sold grid electricity price (\$/MWh) - \$799.02/t \$943.19/t Purchased off-grid electricity price (\$/MWh) - \$803.54/t \$938.67/t Oxygen price (\$/kg-Oxygen) - \$772.45/t \$969.77/t
O ₂ price (\$/kg-O ₂)	0.236	0.177	0.118	Wind power capacity factor (%) - \$760.1/t \$1256.91/t Plant capacity factor (%) - \$843.65/t \$1203.41/t
Wind power capacity factor	95%	81.33%	54.22%	Total tax rate (%) - \$855.18/t \$892.78/t General inflation rate (%) - \$719.34/t \$1043.9/t
Plant capacity factor	95%	90%	60%	Leveraged after-tax nominal discount rate (%) - \$499.3/t \$499.3/t \$1371.92/t Debt/equity ratio - \$768.23/t \$1034.85/t
Total tax rate	39.2%	29.4%	19.5%	Debt interest rate (%) - \$724.49/t \$1022.95/t Working capital (%) - \$849.57/t \$892.99/t
General inflation rate	9.55%	7.16%	4.77%	Percentage of plant energy from wind (%) - \$862.41/t \$879.8/t Percentage of sold remaning wind energy (%) - \$799.02/t \$943.19/t
Leveraged after-tax nominal discount rate	17.15%	25.72%	34.29%	\$871.11/t
Debt/equity ratio	76/24	70/30	61/39	One-step further can capture extra
Debt interest rate (long-term)	7.13%	10.7%	14.3%	sensitivity metrics
Working capital	2-month liq.	3-month liq.	4-month liq.	 – E.g., Wind power capacity factor
% of plant energy from wind	33.47%	50.20%	66.93%	 – E.g., % of plant energy from wind
% of sold remaining wind energy	65.57%	49.18%	32.79%	 – E.g., % of sold remaining wind energy

The Case Study: An Optimistic Case

Parameter	Optimistic
Sold grid electricity price (\$/MWh)	106.7
Purchased off-grid electricity price (\$/MWh)	28
O ₂ price (\$/kg-O ₂)	0.236
Wind power capacity factor	95%
Plant capacity factor	95%
Total tax rate	39.2%
General inflation rate	3%
Leveraged after-tax nominal discount rate	17.15%
Debt/equity ratio	70/30
Debt interest rate (long-term)	10.7%
Working capital	3-month liquidity

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Bond Debt

Overall Financial Performance Metrics	Most likely value
Equity nominal IRR	17.15%
Profitability index	1.00
Investor payback period	7 years
First year of positive EBITD	analysis year 4
After-tax, nominal NPV @ 17.14666666666666667% discount	\$0
Estimated break-even leveraged cost (2024\$/tonne)	\$354.92

Investor Cash Flow = Investor Withdrawals – Investor Contributions

Investor cash flow, (Millions)

 €1.82 €5.34 70.23 32.63 	 ♦ 51.97 ♦ 64.36 ♦ 65.74 	62 68	 ♦ 27.26 ♦ 37.37 ♦ 38.96 	10. 10	 ♦ 44.03 ♦ 45.82 ♦ 47.66 	♦ 49.57♦ 51.52	 44.63 45.00 47.14 	♦ 49.34♦ 51.61	◆ 49.36◆ 52.69	 ♦ 55.17 ♦ 57.72 	 ♦ 60.35 ♦ 63.06 	ōo I	 68.72 71.68 	
2023 < 2024 < 2025 < 2025 < 2026	2027 2028 2029	2030 2030 2031	2032 2033 2034	2035 2036	2037 2038 2039	2040 2041	2042 2043 2044	2045 2046	2047 2048	2049 2050	2051	2053	2055	♦ 332.2056

The Case Study: An Optimistic Case

Parameter	Optimistic
Sold grid electricity price (\$/MWh)	106.7
Purchased off-grid electricity price (\$/MWh)	28
O ₂ price (\$/kg-O ₂)	0.236
Wind power capacity factor	95%
Plant capacity factor	95%
Total tax rate	39.2%
General inflation rate	3%
Leveraged after-tax nominal discount rate	17.15%
Debt/equity ratio	70/30
Debt interest rate (long-term)	10.7%
Working capital	3-month liquidity

CLEAN ENERGY

SISTING COUNTRIES WITH CLEAN ENERGY POLICY

One-time Loan

Overall Financial Performance Metrics	Most likely value
Equity nominal IRR	17.15%
Profitability index	1.00
Investor payback period	8 years
First year of positive EBITD	analysis year 4
After-tax, nominal NPV @ 17.146666666666667% discount	\$0
Estimated break-even leveraged cost (2024\$/tonne)	\$533.35

Investor Cash Flow = Investor Withdrawals – Investor Contributions

Investor cash flow, (Millions)

Capabilities and Limitations of H2FAST

Main Capabilities:

COUNTRIES WITH CLEAN ENERGY POLIC

- Model is used in corporate finance
 - Three-statement model
- Compatible with IFRS and GAAP
- Price-taker or price-setter modes
- Simple process and power input parameters (e.g., plant capacity, electricity prices, etc.)
- Automatic plotting of important results
- Performs Monte-Carlo risk analysis
 - Probability analysis to predict possible outcomes

Main Limitations:

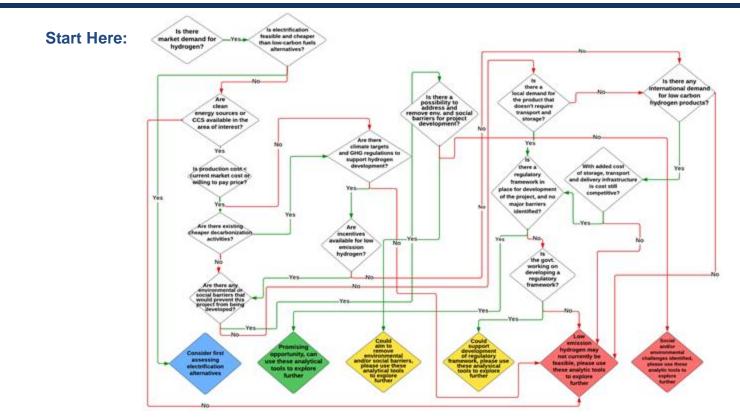
- Does not model the retained earnings or most accounting metrics
- Does not account for annual changes in inflation rates or earnings per share
- Depends on process and power system assumptions (i.e., design-specific)
 - E.g., Does not capture hourly variable electricity
 - · Can set constant annual electricity price
 - E.g., Does not capture hourly variable mass flow rates

How To Get H2FAST?

 <u>https://www.nrel.gov/hydrogen/</u> <u>h2fast.html</u>

Thank you!

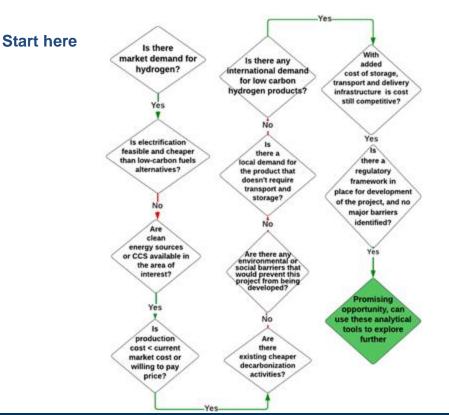
Hussain Almajed, <u>Hussain.Almajed@NREL.gov</u>



Quick Demonstration of the H2FAST Tool

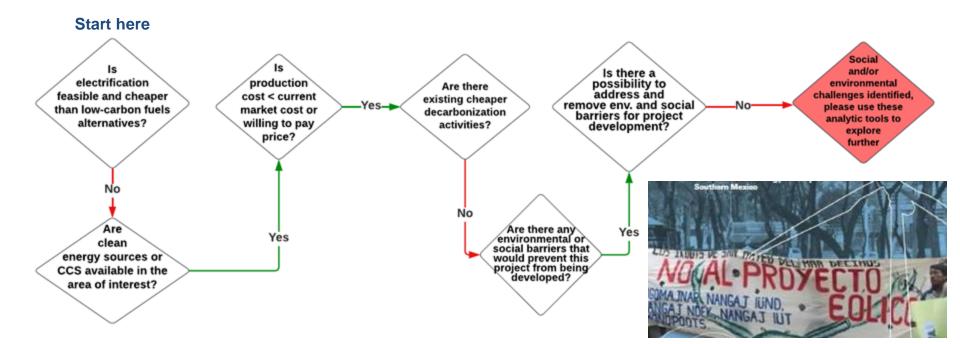
Presented by Jamie Kee, National Renewable Energy Laboratory

May 29, 2024


Navigating Hydrogen Considerations Tree Flow Chart for Potential Projects

Note: This flow chart is intended to provide a very <u>high-level</u> <u>overview</u> of considerations and questions, to be used for qualitative discussion purposes.

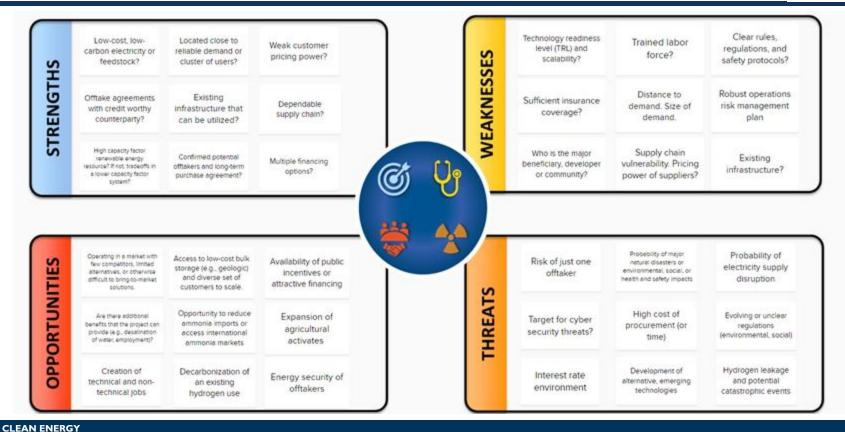
It should <u>not</u> be used to make investment decisions.


Promising Opportunity to Explore Further

CLEAN ENERGY SOLUTIONS CENTER ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Significant Barrier(s) Identified

Integrating Diverse Stakeholders



SWOT Analysis - Guiding Questions

SOLUTIONS CENTER

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

cleanenergysolutions.org | 43

Please take our survey! It will surface as soon as the event ends. Your feedback is highly valued!

Thank you for joining!

Questions? Contact Expert@CleanEnergySolutions.org

https://www.cleanenergyministerial.org/initiatives-campaigns/clean-energy-solutions-center/

